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Abstract. e+ + H(ns) → e+ + H(n′s) transitions for arbitrary n and n′ have been studied using the
distorted-wave formalism in the momentum space [1]. The distorted-wave scattering amplitudes have been
written in a simple closed analytical form. A detailed study has been made on differential and total cross
sections in the energy range 20–300 eV. Resonance-like behaviour of the differential cross section has been
observed in the the region of lower scattering angles for high Rydberg transitions. To the best of our
knowledge the distorted-wave results for differential and total cross sections for such arbitrary transitions
are reported for the first time in the literature.

PACS. 34.60.+z Scattering in highly excited states (e.g., Rydberg states) – 34.85.+x Positron scattering

1 Introduction

Atomic transition processes involving arbitrary initial
(nlm) and final (n′l′m′) states have found wide applica-
tions in many fields, such as, astrophysics, plasma physics
etc. The knowledge of the differential cross sections of such
processes are of utmost importance in order to interpret
the distribution of emitted radiation. But in practice, so-
phisticated quantum mechanical treatment of such prob-
lems is too complicated to be carried out.

Though a number of perturbative and non-
perturbative calculations [1–10] have been performed to
study 1s − 2s and 1s − 2p excitations of hydrogen atom
by positron impact, arbitrary excitation calculations
have rarely been reported in the literature except using
the first Born approximation (FBA) [11–14]. Sil and
co-workers [12] reported closed form expressions for
the FBA amplitude for nlm − n′l′m′ transitions in
direct excitation and electron-capture processes during
e± − H and p − H collisions. The asymptotic form of the
amplitude as n → ∞ was also obtained. It was reported
that the total cross section for all the processes satisfied(
n−3

)
-law.

In this work, we have derived a general formula for
obtaining the partial-wave distorted-wave amplitudes of
positron-impact excitations to an arbitrary s-state from
an arbitrary s-state of the hydrogen atom in closed an-
alytical forms. Making use of these expressions, we have
made a detailed study on the nature of the differential and
total cross sections.

The distorted-wave theory in the momentum space as
used in the paper was derived by the authors recently [1]
by approximating the distortion potential in a particular
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channel as the average of perturbation of that particular
channel over the bound states. The real advantage of this
method is that a few straight forward calculations are re-
quired to compute the scattering amplitude in a closed
analytical form for all partial waves. This theory was ap-
plied successfully to study 1s − 2s excitation of hydrogen
atom by positron impact and Ps(ns) (n = 1, 2, 3) for-
mation in positron-hydrogen collisions in the intermedi-
ate and high energy range. The computed results of these
processes compare nicely with other theoretical and ex-
perimental results available in the literature.

The plan of the paper is as follows. Presenting the
details of our calculations in Section 2, we discuss our
computed results in Section 3. Finally in Section 4 we
make our concluding remarks.

2 Calculational details

We have used the distorted-wave amplitude in the mo-
mentum space as obtained previously [1]:

A
(L)
fi (kf , ki)] = g

(L)
B (kf , ki) + D

(L)
fi (kf , ki) (1)

where g
(L)
B (kf , ki) and D

(L)
fi (kf , ki) are obtained as:

[g(L)
B (kf , ki)] =

√
kikf

2

+1∫

−1

[gB( �kf , �ki)]PL(cos θf ) d(cos θf ),

and

[D(L)
fi (kf , ki)] =

√
kikf

2

+1∫

−1

[D( �kf , �ki)]PL(cos θf ) d(cos θf ),
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in which the two-body amplitudes are given by

gB( �kf , �ki) =
(
−2π

µf

)−1

〈Φf |Vf |Φi〉;

ffγ( �kf , �ki) =
(
−2π

µγ

)−1

〈Φf |Vf |Φ′′
γ〉;

fγi( �kf , �ki) =
(
−2π

µi

)−1

〈Φ′′
γ |Ui|Φi〉;

with the double scattering matrix elements

Dfi( �kf , �ki) =
1

(2π)3
∑

γ

(
−2π

µγ

)

×
∫

d �k′′

E − E′′
γ + iε

ffγ( �kf , �ki)fγi( �kf , �ki). (2)

Here γ denotes the intermediate states of hydrogen atom.
The distorted-wave amplitude A

(L)
fi (kf , ki)] is a function

of the scattering energies for any partial wave L.
For e+ + H(n00) → e+ + H(n′00) collisions

Ui = 〈φi|Vi|φi〉 = 〈φn00|Vi|φn00〉,
Uf = 〈φf |Vf |φf 〉 = 〈φn′00|Vf |φn′00〉,

where Vi = (1/r1 − 1/r12) = Vf , with the plane-wave
states in the incident and the final channel are respec-
tively given by

Φi(�r1, �r2) = ei�ki.�r1φi(�r2) and Φf (�r1, �r2) = ei �kf .�r1φf (�r2)

in atomic units. φi(�r2), φf (�r2) are the wave functions of
H-atom in the initial and the final channel respectively,
where f corresponds to (n′00), n′ = 1, 2, 3, ... and i corre-
sponds to (n00), n = 1, 2, 3, ...

Now the wave function of hydrogen atom in n00 state
in atomic units is given by

φn00(�r2) = − 1√
2π

1√
2

[(
2
n

)3 (n − 1)!
2n(n!)3

] 1
2

e−
r2
n L1

n(ρ),

(3)
where L1

n(ρ) is the associated Laguerre polynomial of
degree n with ρ = 2r2/n. Using the relation be-
tween the associated Laguerre polynomial Lp

q(ρ) and the
Laguerre polynomial Lq(ρ), Lp

q(ρ) = dpLq(ρ)/dρp, and the
Rodrigue formula for the Laguerre polynomial, Lq(ρ) =
eρdq(ρq e−ρ)/dρq, equation (3) can be written as

φn00(�r2) = − 1√
2π

1√
2

[(
2
n

)3 (n − 1)!
2n(n!)3

] 1
2

× e−
r2
n

d

dρ

[
eρ dn

dρn
(ρp e−ρ)

]
. (4)

Further, using Leibnitz’s rule for successive derivative,
equation (4) can be framed as

φn00(�r2) = − 1√
2π

1√
2

[(
2
n

)3 (n − 1)!
2n(n!)3

] 1
2

× e−
r2
n

n∑

t=1

(−1)t

(
n

t

)
n!

(t − 1)!

(
2
n

)t−1

rt−1
2

or, φn00(�r2) = − 1
4
√

π

1
2

(
2
n

)2
√

1
2

(
2
n

)
e−

r2
n

×
n∑

t=1

(−1)t

(
n

t

)
1

(t − 1)!

(
2
n

)t−1

rt−1
2

or, φn00(�r2)=H(n)e−
r2
n

n∑

t=1

(−1)t

(
n

t

)
1

(t − 1)!

(
2
n

)
t−1rt−1

2

(5)

with

H(n) = − 1
4
√

π

1
2

(
2
n

)2
√

1
2

(
2
n

)
.

The n00−n′00 inelastic amplitudes thus can be written as

ffi( �kf , �ki) =
(
−2π

µi

)−1

〈Φf |Vi|Φi〉

=〈ei.�kf .�r1φn′00(�r2)|Vi|ei.�ki.�r1φn00(�r2)〉

=
(
−2π

µi

)−1 ∫
e−i.�kf .�r2φ∗

n′00(�r2) |Vi|

× ei.�ki.�r1φn00(�r2) d�r1 d�r2

=
(
−2π

µi

)−1

[H(n′)][H(n)]

×
n∑

t=1

n′
∑

s=1

(−1)t+s

(
n

t

)(
n′

s

)

× 1
(t − 1)!(s − 1)!

(
2
n

)t−1 (
2
n′

)s−1

×
∫

rt+s−2
2 ei.�q.�r1−( 1

n + 1
n′ )r2 Vi d�r1 d�r2

=
(
−2π

µi

)−1

[H(n′)][H(n)]

×
n∑

t=1

n′
∑

s=1

(−1)t+s

(
n

t

)(
n′

s

)

× 1
(t − 1)!(s − 1)!

(
2
n

)t−1 (
2
n′

)s−1

× EL(�q,
1
n

+
1
n′ , t + s − 2), (6)

where �ki − �kf = �q and

EL(�q, b, n) =
∫

rn
2 ei.�q.�r1−br2 Vi d�r1 d�r2. (7)
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Taking Fourier integral transforms for functions of the
form exp(−λr)/r, exp(−λr):

exp(−λr)/r =
1

2π2

∫
ei�p.�r

p2 + λ2
d�p (8)

exp(−λr) =
λ

π2

∫
ei�p.�r

(p2 + λ2)2
d�p (9)

and then utilising the δ-function properties, such as,
∫

ei(�q− �∆).�rf(�q)d�q d�r = (2π)3
∫

δ(�q − �∆)f(�q)d�q

= (2π)3f( �∆), (10)

we obtain

EL(�q, b, 0) =
∫

ei.�q.�r1−br2 Vi d�r1 d�r2

= 32π2

[
1

b3(q2 + b2)
− 1

2
−2b

b2(q2 + b2)2

]
. (11)

Utilising the formula of the nth order derivative of a func-
tion of the form 1/(a2 + x2), such as,

DI(x, a, n) =
dn

dxn

[
1

a2 + x2

]

= (−1)n n!
a

sin [(n + 1) tan−1 (a
x)]

(a2 + x2)
n+1
2

if a �= 0

= (−1)n (n + 1)!
xn+2

if a = 0

(12)

or

dn

dxn

[
1

a2 + x2

]
= (−1)n

R∑

r=0

(−1)r

(
n−r

r

)
(2x)n−2r

(a2 + x2)n+1−r

with R = n/2 if n is even,

= (n − 1)/2 if n is odd (13)

and Liebnitz’s rule for successive differentiation, we obtain
a closed form expression

EL(�q, b, n) = (−1)n ∂n

∂bn
[EL(�q, b, 0)]

= 16π2
n∑

r=0

(−1)r

(
n

r

)
(n − r + 1)!

bn−r+2

×
[
(n − r + 2)

DI(b, q, r)
b

− DI(b, q, r + 1)
]

.

(14)

Substituting equation (13) in equation (6), we obtain the
desired n00 − n′00 inelastic amplitudes.

From the above derivation it is evident that the scat-
tering amplitudes in closed analytical forms are readily
evaluated and easily interpreted.

3 Results and discussion

3.1 Differential cross section

In this paper, we have used the same theory as that of our
previous paper [1] to calculate and verify the differential
cross section. In our previous work [1] we compared our
results of differential cross section for 1s−2s excitation of
hydrogen atom by positron impact with other theoretical
predictions [4–7] and showed that our findings are in nice
agreement with those theoretical results. Further, it was
found that the differential cross section for 1s − 2s tran-
sition in positron-hydrogen collisions did not show any
interesting feature. It simply behaves like a monotonic de-
creasing function of the scattering angle, which falls down
sharply from the forward angles. However, the differen-
tial cross section for higher order transitions in positron-
hydrogen collisions present some dramatic behaviour.

We present our results for differential cross sections for
the 2s − 3s, 3s − 4s and 4s − 5s in Table 1 at some dis-
crete angles. It is clear from this table that the differential
cross section is highly peaked at 0◦ and this peak rises
up with increasing n. Further the peak falls down as the
difference of n′ and n increases. It is worthwhile to men-
tion here that the very high cross sections at the forward
scattering angles negligibly contribute to the total cross
section because of the presence of the factor sin θ in the

formula, σt = 2
π∫

0

(dσ/dΩ) sin θ dθ. The main reason for

large differential cross sections at 0◦ is as follows.
The energy conservation for ns to n′s excitation of

hydrogen by positron impact in a.u. is given by

k2
i − k2

f =
(

1
n2

− 1
n′2

)
, (15)

where ki and kf are the momenta of the incident and
scattered positron respectively. Now as the value of the ex-
pression in the right hand side of equation (15) decreases
ki becomes close to kf and consequently the contribution
of Born’s amplitude increases indefinitely at 0◦. Moreover
the rapid increase of the differential cross section with
higher values of n follows the Rutherford scattering for-
mula [15] which predicts infinite cross section at 0◦ and
thus our results for scattering cross section seem to be in
accordance with the correspondence principle.

It is clear from the Table 1 that, though for 1s − 2s
and 2s − 3s transitions, the differential cross sections de-
crease steadily with higher scattering angles, appreciable
variation in differential cross section with varying scatter-
ing angle is observed for 3s − 4s and higher transitions.
The amount and nature of variation in differential cross
section for different transitions are controlled by the quan-
tity k2

i −k2
f . Our findings indicate that the lesser the value

of k2
i −k2

f , the greater the variation in differential cross sec-
tion. It has been found that whenever k2

i − k2
f > 0.1 a.u.

(approx.) no variation in differential cross section occur
with varying scattering angles.

Variation of the differential cross sections at the for-
ward scattering angles for transition from the higher states
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Table 1. Inelastic differential cross sections of the atomic hydrogen by positron impact, in a.u. σt denote the total cross section
in units of πa2

0. The notation x[−y] stands for x × 10−y .

Angle Energy (eV)

Transitions (deg) 40.0 50.0 60.0 150.0 250.0

0 0.9893[+02] 0.9903[+02] 0.9910[+02] 0.9927[+02] 0.9927[+02]

5 0.6625[+02] 0.5970[+02] 0.5379[+02] 0.2131[+02] 0.7813[+01]
10 0.2129[+02] 0.1443[+02] 0.9844[+01] 0.4685[+00] 0.7539[−01]
30 0.2055[+00] 0.1050[+00] 0.6018[−01] 0.4608[−02] 0.1312[−02]
45 0.4222[−01] 0.2171[−01] 0.1272[−01] 0.9041[−03] 0.2347[−03]

2s → 3s 60 0.1493[−01] 0.7736[−02] 0.4480[−02] 0.2133[−03] 0.2417[−04]
90 0.3864[−02] 0.1946[−02] 0.1111[−02] 0.8440[−04] 0.2728[−04]
120 0.1684[−02] 0.8357[−03] 0.4697[−03] 0.1863[−04] 0.1174[−05]

150 0.1073[−02] 0.5356[−03] 0.3061[−03] 0.2856[−04] 0.1199[−04]
180 0.9232[−03] 0.4497[−03] 0.2422[−03] 0.3385[−05] 0.3588[−04]
σt 0.2120[+01] 0.1638[+01] 0.1326[+01] 0.4094[+00] 0.1802[+00]
0 0.1744[+04] 0.1727[+04] 0.1716[+04] 0.1685[+04] 0.1679[+04]

5 0.3827[+03] 0.2538[+03] 0.1683[+03] 0.3812[+01] 0.1098[+00]
10 0.1677[+02] 0.9551[+01] 0.6291[+01] 0.5246[+00] 0.2975[−01]
30 0.2682[+00] 0.1563[+00] 0.1014[+00] 0.7103[−02] 0.3627[−03]
45 0.4806[−01] 0.2859[−01] 0.1903[−01] 0.1347[−02] 0.6245[−04]

3s → 4s 60 0.8643[−02] 0.3198[−02] 0.1275[−02] 0.7235[−06] 0.4678[−07]
90 0.5610[−02] 0.3571[−02] 0.2485[−02] 0.2049[−03] 0.9501[−05]
120 0.6768[−03] 0.1678[−03] 0.3371[−04] 0.6642[−05] 0.3196[−06]

150 0.2144[−02] 0.1545[−02] 0.1182[−02] 0.1257[−03] 0.5802[−05]
180 0.2269[−02] 0.4418[−02] 0.5511[−02] 0.1369[−02] 0.6330[−04]
σt 0.7569[+01] 0.5235[+01] 0.3813[+01] 0.4047[+00] 0.2526[−01]
0 0.1358[+05] 0.1344[+05] 0.1335[+05] 0.1324[+05] 0.1327[+05]

5 0.2402[+03] 0.8530[+02] 0.3126[+02] 0.5392[+00] 0.1625[+00]
10 0.3315[+02] 0.1592[+02] 0.7123[+01] 0.2950[−02] 0.5879[−02]
30 0.4961[+00] 0.2228[+00] 0.9555[−01] 0.1928[−04] 0.6222[−04]
45 0.9216[−01] 0.4181[−01] 0.1808[−01] 0.3060[−05] 0.1067[−04]

4s → 5s 60 0.7950[−04] 0.1231[−04] 0.8575[−05] 0.6302[−06] 0.2476[−07]
90 0.1453[−01] 0.6699[−02] 0.2898[−02] 0.9660[−06] 0.1577[−05]
120 0.3783[−03] 0.2479[−03] 0.1182[−03] 0.2046[−06] 0.3663[−07]

150 0.8785[−02] 0.4142[−02] 0.1802[−02] 0.7558[−06] 0.9388[−06]
180 0.9204[−01] 0.4630[−01] 0.2052[−01] 0.1272[−04] 0.9572[−05]
σt 0.1101[+02] 0.5476[+01] 0.2575[+01] 0.2267[−02] 0.4473[−02]

of hydrogen atom, such as 5s, 6s, 10s etc., to the next
higher states is of particular importance. To have a trans-
parent idea about such a variation we have plotted the
differential cross sections for 5s−6s, 6s−7s and 10s−11s
transitions as a function of scattering angle in the range
0◦–10◦ in Figures 1a–1c.

In each case, the differential cross section first falls
abruptly from its peak value at 0◦ to the primary min-
imum1, and then rises to a secondary maxima. It then
again falls down to a secondary minimum nearly equal to
the primary minimum and then rises up to a secondary
maxima which is much above the first secondary maxima
and is the second global maximum. It is to be mentioned
here that the formation of second secondary minimum and

1 We call the first local maximum and minimum of the differ-
ential cross section near the forward direction as the primary
maximum and minimum respectively. The other local maxima
and minima are called secondary maxima and minima respec-
tively.

secondary maximum depends on the factor k2
i −k2

f . When-
ever there is a variation in differential cross section, the
primary minimum and the first secondary maximum are
formed first, subsequently other maxima and minima are
formed depending on the factor k2

i − k2
f . For instance, in

case of 5s to 8s transition, only the primary minimum and
the first secondary maximum are observed for 50 eV of en-
ergy but as the energy increases the first secondary mini-
mum along with second secondary start forming. With the
higher values of n or energy, these maxima and minima
slowly move towards the forward direction and more max-
ima and minima of comparatively less values start form-
ing from the backward direction. Further the value of the
second global maximum increases with higher values of
n. But beyond the scattering angle of 10◦ the differential
cross section assumes nearly zero value, though there is a
little regular variation beyond this scattering angle, it is
not very much appreciable. The surface plots in Figures 2
and 3 make this nature of the differential cross section
more transparent.
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Fig. 1. Differential cross section (a.u.) as a function of scat-
tering angle (deg) for (a) e+ + H(5s) → e+ + H(6s), (b)
e+ + H(6s) → e+ + H(7s) and (c) e+ + H(10s) → e+ + H(11s)
transitions at 100 eV of incident positron energy.

Fig. 2. Differential cross section (a.u.) as a function of energy
(50–300 eV) and scattering angle (0◦–15◦) for the transition
e+ + H(5s) → e+ + H(6s). The angles in the figures have been
magnified by 10 units.

Fig. 3. Differential cross section (a.u.) as a function of energy
(50–300 eV) and scattering angle (0◦–15◦) for the transition
e+ + H(5s) → e+ + H(6s). The angles in the figures have been
magnified by 10 units.
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Table 2. Movement of the primary minimum (θp) and second global maximum (θs) with energy along with the corresponding
differential cross sections [dσ/dΩ]θp

and [dσ/dΩ]θs
in a.u. respectively.

Energy (eV) 50.0 60.0 75.0 100.0 150.0 200.0 250.0

θp 3.8400 3.5000 3.1400 2.7300 2.2300 1.9300 1.7200[
dσ
dΩ

]
θp

0.0635 0.1728 0.0025 0.3332 0.1969 0.0095 0.0032

5s − 6s θs 5.8900 5.3700 4.8100 4.1600 3.400 2.9400 2.6300[
dσ
dΩ

]
θs

4.4493 4.3396 4.5160 5.2456 5.1091 4.8107 4.8020

θp 4.3800 3.9300 3.5100 3.0600 2.5000 2.1600 1.9300[
dσ
dΩ

]
θp

3.4190 0.1290 0.0233 0.0172 0.1217 0.0166 0.0004

5s − 7s θs 6.2600 5.800 5.1900 4.4900 3.6700 3.1800 2.8400[
dσ
dΩ

]
θs

4.4290 1.7643 1.6314 1.8469 2.0304 1.8627 1.8337

θp 5.6000 4.2200 3.7400 3.2500 2.6600 2.3000 2.0600[
dσ
dΩ

]
θp

4.4356 0.6670 0.0007 0.0001 0.0631 0.0174 0.0006

5s − 8s θs × 6.0300 5.4300 4.7000 3.8300 3.3200 2.9700[
dσ
dΩ

]
θs

× 1.4103 0.80158 0.8851 1.0315 0.9504 0.9211

θp 2.7300 2.4900 2.2200 1.9200 1.5700 1.3600 1.2200[
dσ
dΩ

]
θp

3.0315 3.6220 1.5036 0.0248 0.0061 0.0245 0.0532

6s − 7s θs 4.1000 3.7400 3.3500 2.9000 2.3700 2.0500 1.8300[
dσ
dΩ

]
θs

26.1668 26.8157 24.0336 22.0133 22.3909 22.3842 22.2656

θp 3.0900 2.8300 2.5300 2.1900 1.7900 1.5500 1.3800[
dσ
dΩ

]
θp

0.0750 0.7909 1.0984 0.1306 0.0063 0.0168 0.0095

6s − 8s θs 4.4900 4.1000 3.6600 3.1700 2.5900 2.2400 2.0100[
dσ
dΩ

]
θs

8.3319 9.5578 9.7114 8.3294 8.3109 8.3570 8.2976

θp 2.0200 1.8400 1.6500 1.4300 1.1700 1.0100 0.9000[
dσ
dΩ

]
θp

0.8570 0.0821 0.0102 0.2256 0.0727 0.0085 0.2424

7s − 8s θs 3.0300 2.7700 2.4800 2.1400 1.7500 1.5200 1.3600[
dσ
dΩ

]
θs

78.3090 77.5414 79.1160 79.4364 78.6471 78.8859 78.7945

θp 2.3300 2.1200 1.9000 1.6500 1.3400 1.1600 1.0400[
dσ
dΩ

]
θp

2.6536 0.1098 0.0134 0.1074 0.0397 0.0567 0.0091

7s − 9s θs 3.3500 3.0600 2.7400 2.3700 1.9400 1.6800 1.5000[
dσ
dΩ

]
θs

31.2350 27.8930 28.3892 28.9971 28.4549 28.6115 28.5960

× denotes the non-existence of the corresponding quantity.

What we proved in our previous paper [1] as the
reasons for formation of maxima and minima in the differ-
ential cross section for positronium formation in positron-
hydrogen collisions have been found to be true for inelas-
tic positron-hydrogen collisions as well. A minimum in the
differential cross section is formed due to destructive in-
terference of the scattered waves of different angular mo-
mentum states where as a maximum is formed due to the
constructive interference of the scattered waves of differ-
ent angular momentum states. Actually the behaviour of
sudden rise and fall of the differential cross section within
a very short range of scattering angle, particularly for ns
to (n + 1)s higher order transitions, where the sizes of
rise and fall are substantial, is definitely a resonance-like
charateristic of the differential cross section. We list in
Table 2 the movement of primary minimum and second
global maximum with increasing energy along with their
corresponding differential cross sections in order to get a
clear insight of the fact.

It is by now established by our previous stud-
ies [1,16,17] on elastic positron collisions and positronium
formation that diffraction oscillations of the differential

cross section due to interference of partial waves give rise
to the presence of maxima and minima at the critical an-
gles for low and intermediate energies of positron impact.

In the present study it is reported for the first time
that orbiting oscillations do occur for positron-impact ex-
citation processes, n ≥ 5. The signature of orbiting of the
positron around the target is apparent with the appear-
ance of pronounced resonance-like structure in the cor-
responding differential cross section. We have displayed
this nature in Figures 1a–1c for 5s − 6s, 6s − 7s and
10s − 11s transitions respectively at the energies 50 eV,
100 eV, 150 eV; the relevant resonance profiles are en-
listed in Table 3 for 8s−9s, 9s−10s and 10s−11s transi-
tions at some discrete energies. It is evident from the table
that the half-width decreases with the increasing energy
as well as the higher order of transition. To the best of our
knowledge this behaviour of the differential cross section
for positron-impact excitations has not been reported so
far.

However, for elastic atom-atom collisions, the effect
of orbiting on the differential and total cross sections
has been very well studied both theoretically [18–21] and
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Table 3. Resonance profile – resonance angle (θr) (in deg.) along with the corresponding differential cross section [dσ/dΩ]θs

(in a.u.) and half width Γ/2 (in deg). The resonance angle corresponds to the second global maximum (θs). The notation x[y]
stands for x × 10y .

Energy (eV) 50.0 75.0 100.0 150.0 200.0 250.0
θr 2.34 1.91 1.65 1.35 1.17 1.04

8s − 9s
[

dσ
dΩ

]
θr

0.2367[3] 0.2303[3] 0.2323[3] 0.2315[3] 0.2318[3] 0.2316[3]

Γ/2 0.22 0.18 0.15 0.12 0.11 0.09
θr 1.86 1.52 1.31 1.07 0.93 0.83

9s − 10s
[

dσ
dΩ

]
θr

0.5928[3] 0.5954[3] 0.5948[3] 0.5953[3] 0.5952[3] 0.5955[3]

Γ/2 0.17 0.14 0.12 0.09 0.08 0.07
θr 1.51 1.23 1.07 0.87 0.76 0.68

10s − 11s
[

dσ
dΩ

]
θr

0.1375[4] 0.1380[4] 0.1377[4] 0.1378[4] 0.1376[4] 0.1375[4]

Γ/2 0.13 0.11 0.10 0.07 0.07 0.06

Table 4. Integrated cross section for e+ + H(ns) → e+H(n′s), in units of πa2
0. The notation x[−y] stands for x × 10−y .

Energy (eV) 20 54.4 75 100 200 300

1s − 2s 0.2852[+00] 0.1135[+00] 0.8206[−01] 0.6133[−01] 0.3044[−01] 0.2018[−01]

1s − 3s 0.5641[−01] 0.2294[−01] 0.1652[−01] 0.1231[−01] 0.6080[−02] 0.4034[−02]
1s − 4s 0.2082[−01] 0.8581[−02] 0.6172[−02] 0.4594[−02] 0.2264[−02] 0.1502[−02]
1s − 5s 0.1003[−01] 0.4163[−02] 0.2993[−02] 0.2226[−02] 0.1097[−02] 0.7270[−03]
1s − 8s 0.2293[−02] 0.9602[−03] 0.6899[−03] 0.5129[−03] 0.2524[−03] 0.1673[−03]

1s − 10s 0.1156[−02] 0.4853[−03] 0.3486[−03] 0.2592[−03] 0.1275[−03] 0.8449[−04]
1s − 15s 0.3375[−03] 0.1420[−03] 0.1020[−03] 0.7580[−04] 0.3728[−04] 0.2470[−04]

2s − 3s 0.4876[+01] 0.1486[+01] 0.1018[+01] 0.7125[+00] 0.2633[+00] 0.1280[+00]

2s − 4s 0.1032[+01] 0.3031[+00] 0.2101[+00] 0.1505[+00] 0.6261[−01] 0.3502[−01]
2s − 5s 0.4061[+00] 0.1169[+00] 0.8095[−01] 0.5824[−01] 0.2479[−01] 0.1445[−01]
2s − 8s 0.7665[−01] 0.2163[−01] 0.1493[−01] 0.1077[−01] 0.4641[−02] 0.2783[−02]

2s − 10s 0.3711[−01] 0.1043[−01] 0.7191[−02] 0.5187[−02] 0.2240[−02] 0.1349[−02]
2s − 15s 0.1042[−01] 0.2915[−02] 0.2008[−02] 0.1449[−02] 0.6266[−03] 0.3786[−03]

3s − 4s 0.2148[+02] 0.4531[+01] 0.2514[+01] 0.1350[+01] 0.1104[+00] 0.4206[−02]

3s − 5s 0.4550[+01] 0.1085[+01] 0.6837[+00] 0.4455[+00] 0.7537[−01] 0.6487[−02]
3s − 6s 0.1788[+01] 0.4293[+00] 0.2754[+00] 0.1910[+00] 0.4549[−01] 0.5513[−02]
3s − 8s 0.5379[+00] 0.1289[+00] 0.8203[−01] 0.5865[−01] 0.1878[−01] 0.3074[−02]

3s − 10s′ 0.2386[+00] 0.5715[−01] 0.3604[−01] 0.2587[−01] 0.9345[−02] 0.1739[−02]

4s − 5s 0.4786[+02] 0.3962[+01] 0.7138[+00] 0.4148[−01] 0.2522[−03] 0.6111[−02]
4s − 6s 0.1148[+02] 0.2186[+01] 0.7065[+00] 0.1127[+00] 0.2093[−03] 0.2108[−02]

4s − 7s 0.4576[+01] 0.1123[+01] 0.4808[+00] 0.1121[+00] 0.2412[−03] 0.8016[−03]
4s − 9s 0.1415[+01] 0.3845[+00] 0.2137[+00] 0.6928[−01] 0.7077[−04] 0.1696[−03]

5s − 6s 0.5948[+02] 0.5762[−02] 0.1084[−02] 0.3199[−01] 0.1023[−02] 0.5079[−05]
5s − 7s 0.2561[+02] 0.6741[−01] 0.3389[−02] 0.1593[−02] 0.2345[−02] 0.1217[−04]
5s − 9s 0.5543[+01] 0.1907[+00] 0.1446[−02] 0.4434[−03] 0.2200[−02] 0.6315[−05]

6s − 7s 0.3899[+01] 0.2296[+00] 0.1030[+00] 0.1647[−02] 0.3211[−02] 0.1205[−05]
6s − 8s 0.1262[+02] 0.2267[−01] 0.7997[−01] 0.9719[−02] 0.1768[−02] 0.1437[−04]
6s − 9s 0.1222[+02] 0.3496[−03] 0.4066[−01] 0.1392[−01] 0.8995[−03] 0.3135[−04]

10s − 11s 0.5584[+00] 0.1016[−01] 0.4621[−03] 0.1065[−02] 0.6767[−05] 0.4106[−04]

experimentally [22,23]. For these systems the theoretical
extensive studies have been made possible by the use of
semi-classical and Regge-pole methods due to the heavy-
particle nature of collisions which may not be readily ap-
plicable to the purely quantum collision systems involving
electrons and positrons with atoms and molecules as in
the present case.

Detailed study on the nature of orbiting around the
target and the formation of temporary bound states are
of very importance for collisional studies in atomic, molec-

ular and nuclear physics and chemistry in particular. They
require a separate and special treatment. Methods partic-
ularly suited for these studies, such as, the complex rota-
tion or the R-matrix method [24] should be employed for
accurate determination of the angle and life-time (width)
of the Lorenz profile.

Thus a comprehensive study seems to have been made
on arbitrary inelastic differential cross section for positron-
hydrogen collisions at intermediate and high energies. Our
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Fig. 4. Total cross section (π a2
0) for (a) e+ + H(4s) → e+ +

H(5s), (b) e+ + H(6s) → e+ + H(7s) and (c) e+ + H(10s) →
e+ + H(11s) transitions in the range 100–300 eV.

investigations reveal the following important information
regarding the inelastic differential cross section.

(i) The cross section is highly peaked at 0◦ and the
height of the peak further increases with higher values
of n. In accordance with the correspondence princi-
ple, this nature seems to be quite satisfactory.

(ii) The nature of inelastic differential cross section is
controlled by the factor k2

i − k2
f = (1/n2 − 1/n′2).

(iii) If k2
i − k2

f > 0.1 no variation of differential cross sec-
tion with scattering angle is observed. With the de-
crease in the value of k2

i − k2
f , several local maxima

and minima are found to be formed one after another
near the forward scattering angle; they slowly move
in the forward direction with higher values of n or
energy.

(iv) The maxima and minima have been found respec-
tively to be formed due to the constructive and de-
structive interferences of the scattered waves of dif-
ferent angular momentum states.

(v) The formation of second global maximum in a very
short range of scattering angles resembles resonance
charateristic of the differential cross section.

(vi) All major variations in the differential cross section
are observed for the scattering angle in the range 0◦–
10◦ for higher order transitions.

3.2 Total cross section

In Table 4 we present our results for total inelastic cross
section for different transitions. These results are fairly
accurate as we have already compared our results of total
cross section for 1s − 2s transition with other available
results in the literature [5,7–10] in our previous paper [1]
and have seen that our results for total cross section were
in nice agreement with those results.

From Table 4 it is evident that total cross section, as
a function of energy, decreases monotonically with en-
ergy for all transitions from the 1s, 2s and 3s states
to any higher states. But for the transitions from ns
(n = 4, 5, 6, ...) to n′s (5, 6, 7, ...), the total cross section
as a function of energy presents some deviating feature.
Variation in the total cross section with energy is observed
for such transitions. Though the variation initially takes
place at higher energy region for a transition from 4s state,
with the higher values of n such variation gradually shifts
towards the lower energy region and becomes more trans-
parent as evident from the Figures 4a–4c.

4 Conclusion

The distorted-wave theory has quite conveniently and el-
egantly been used to study the e+ +H(ns) → e+ +H(n′s)
transitions for arbitrary n and n′. Using simple mathe-
matical tools we have quite easily calculated the distorted-
wave scattering amplitudes for all significant partial-waves
for arbitrary transitions in closed analytical forms. We re-
port results for the differential and total cross sections for
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arbitrary inelastic s−s transitions. These results are fairly
accurate in intermediate and high energy range. Further
sufficient analytical and numerical evidences have been
presented for the sake of further theoretical and experi-
mental works in this field.

The study of inelastic differential cross section for
positron-hydrogen collisions for higher order transition
has revealed some hitherto unknown informations. We
have found the resonance-like charateristic in the inelastic
differential cross section. Further, it has been found that
the total cross section for higher order transitions have
some deviating features from those of lower order transi-
tions.
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